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Single Pulse Manipulations in Synthetic Time-Frequency
Space

Guangzhen Li, Danying Yu, Luqi Yuan,* and Xianfeng Chen

Synthetic dimensions in photonic structures provide unique opportunities for
actively manipulating light in multiple degrees of freedom. Here, a dispersive
waveguide under the dynamic phase modulation is theoretically explored,
which supports single pulse manipulations in the synthetic (2+1)
dimensions. Compared with the counterpart of the conventional (2+1)
space-time, temporal diffraction and frequency conversion in a synthetic
time-frequency space are demonstrated while the pulse evolves along the
spatial dimension. It is found that a rich set of pulse propagation behaviors
can be achieved by introducing the effective non-uniform gauge potential for
photons in the synthetic time-frequency space with the control of the
modulation phase, including confined pulse propagation, fast/slow light, and
pulse compression. With the additional nonperiodic oscillation subject to the
effective force along the frequency axis of light, this work provides an exotic
approach for actively manipulating the single pulse in both temporal and
spectral domains, which shows the great promise for applications of the pulse
processing and optical communications in integrated photonics.

1. Introduction

Synthetic dimension in photonics is an emergent field for
exploring physics in higher-dimensional space within lower-
geometrical structure, which also points toward manipulating
light by utilizing physical phenomena in the synthetic space.[1,2]

Different degrees of freedom of photons can be used to construct
synthetic dimensions, such as frequencies,[3–6] orbital angular
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momenta,[7] pulse arrival times,[8,9]

and others.[10–12] With synthetic dimen-
sions, many potential applications have
been proposed, including unidirec-
tional frequency translation,[13] orbital
angular momentum switch,[14] pulse
narrowing,[15] and mode-locked topo-
logical laser.[16] Furthermore, it has also
been shown that one can simultaneously
build up two synthetic dimensions with
different degrees of freedom of light and
explore topological edge states.[17,18] This
synthetic (2+1) dimensions require only
one single cavity, which dramatically
simplify the experimental requirements.
Group velocity dispersion (GVD) is a

fundamental optical characteristic in a
medium, and is of great importance in ul-
trashort pulse manipulations,[19–21] such
as pulse compression,[22–24] generation
of optical solitons,[25,26] and group ve-
locity control,[27–29] where the interplay

between dispersive and nonlinear effects on optical pulses takes
place.[30] Moreover, it has been found that, when a pulse propa-
gates along a dispersive waveguide, one can consider the prob-
lem in a synthetic (1+1) dimensions, that is, the optical field
diffracts along a time dimension when it evolves along the spatial
dimension.[31–33]

In this work, we move a step further and show the possibil-
ity of multiple single pulse manipulations in synthetic (2+1) di-
mensions including the temporal diffraction and frequency con-
version in a synthetic time-frequency space while a pulse prop-
agates along the spatial dimension. A dispersive waveguide in-
corporating segmented electrodes under travelling wave electro-
optic modulation is considered (see Figure 1a). We show that
one constructs a 2D synthetic space including the time and fre-
quency dimensions, and pulse dynamics is studied when the spa-
tial propagating dimension is treated as the synthetic time evolu-
tion. An effective gauge potential core is constructed in synthetic
two dimensions with non-uniform distribution of modulation
phases to confine light.[34–36] By manipulating the effective gauge
potential core in multiple ways, we show rich physics of pulse
manipulations, including confined pulse propagation, fast/slow
light, and pulse compression. Fundamentally different from pre-
viousworks,[31–33] our results link to physics in (2+1) dimensions,
which points out exotic route toward manipulating pulse profile
and frequency conversion process. Our work can find important
applications of optical pulse engineering in various platforms,
ranging from second/third-order dispersive waveguide-based
systems to on-chip dispersive microresonator-based systems.
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Figure 1. a) A pulse propagating through a waveguide with segmented electrodes for modulations. b) The system in (a) can be mapped into a synthetic
(2+1) dimensions, where an effective gauge potential is constructed in the time-frequency space by non-uniform phase modulation (the upper panel).
The lower panel: A schematic of a time-dependent and spatially non-uniform modulation phase 𝜙(z, 𝜏) described in Equation (2), where the non-zero
phase𝜙0 denotes an effective gauge potential core with the labeled widthΔ𝜏𝜙(z) (red arrow) and center 𝜏c(z) (dashed line) along the temporal dimension
𝜏 at each z. c) Dispersion curves for waveguide (blue line) and modulation (red line).

2. Theoretical Model of the Synthetic
Time-frequency Space

2.1. Physical Concept

We begin with briefly illustrating synthetic (2+1) dimensions
constructed in a waveguide shown in Figure 1a, modulated by
a traveling wave with a sinusoidal radio frequency (RF) signal.
The refractive index is governed by[37]

n(z, t) = n0 + Δn cos[Ωt −Qz + 𝜙(z, t)] (1)

where n0 is static refractive index and Δn is the modulation am-
plitude. Ω, Q , and 𝜙 are the frequency, wavevector, and modu-
lation phase of the RF signal. For a pulse centered at the fre-
quency 𝜔0 propagating along the spatial dimension z, the ap-
plied modulation connects field components at discrete frequen-
cies 𝜔m = 𝜔0 +mΩ, and forms the synthetic frequency dimen-
sion (see Figure 1b).[6] On the other hand, for a dispersive waveg-
uide, the pulse experiences temporal diffraction, which brings
up the concept of the synthetic dimension along the continu-
ous retarded time frame (𝜏 = t − z∕vg , with vg being the group
velocity at 𝜔0).

[30,31] Hence, a synthetic continuous-discrete time-
frequency space is constructed for the pulse travelling along z-
direction inside the waveguide.
It has been demonstrated by Lin et al. that different gauge

potentials in a discrete resonator lattice under dynamic mod-
ulations can guide light spatially.[34] Here, we extend this
mechanism to the proposed synthetic continuous-discrete time-

frequency space by considering a time-dependent and spatially
non-uniform modulation phase 𝜙(z, 𝜏):

𝜙(z, 𝜏) =

{
𝜙0 |𝜏 − 𝜏c(z)| ≤ Δ𝜏𝜙(z)

0 |𝜏 − 𝜏c(z)| > Δ𝜏𝜙(z)
(2)

that is, at any z, the hopping phase along the frequency dimen-
sion is 𝜙0 in a core region with the center 𝜏c(z) and width Δ𝜏𝜙(z),
and equals to 0 at the remaining regions (see Figure 1b). Such
phase distribution can be achieved by controlling RF signals at
each segmented electrode and supports the effective gauge poten-
tial distribution in the synthetic space.[38] The sharp interface of
the square-shape phase distribution in Equation (2) brings higher
effective gauge potential difference, and can better confine light
in the core region,[39,40] where the largest difference occurs at
𝜙0 = 𝜋.[34] We label the middle temporal-spatial region flexibly
formed by non-zero phase 𝜙0 as an effective gauge potential core
(see Figure 1b), which can be used to manipulate single pulse
in different ways. Different from the conventional or temporal
waveguide that guides light by constructing spatial or temporal
refractive index interface,[33,41] the time-averaging refractive in-
dex profile is uniform in our system.

2.2. Theoretical Analysis

We now build detailed theoretical framework to study the sys-
tem. The waveguide in Figure 1a can support a finite number
of guided modes, where only the fundamental guided mode is
considered in our model for simplicity. The electric vector of the
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fundamental guided mode can be written as E(r, t) = ℰ(r⊥)E(z, t)
by using the method of separation of variables with ℰ(r⊥) be-
ing the modal profile of the waveguide.[30,42] For pulse propagat-
ing through the modulated waveguide, the electric field of the
pulse can be expanded as E(z, t) =

∑
m am(z, t)e

i(𝜔mt−𝛽mz), where all
components labeled bym correspond to the fundamental guided
mode of the waveguide.[30,42] Here, am(z, t) is the slowly-varying
envelope for the frequency component at𝜔m.

[3,6] The propagation
constant 𝛽m is not equally spaced due to GVD (see Figure 1c),
which can be defined as 𝛽m = 𝛽0 +mQ + Δqm. Here, 𝛽0 is the
wavevector associated with 𝜔0, and Δqm denotes the wavevector
mismatching. The pulse field follows the wave equation (see Sup-
porting Information)

𝜕2E(z, t)
𝜕z2

− 1
𝜀0c2

𝜕2[𝜀0𝜀r(z, t)E(z, t)]
𝜕t2

= 0 (3)

where 𝜀0 and 𝜀r(z, t) = n2(z, t) are vacuum and relative permit-
tivity, respectively. With the expansion of the field, we obtain the
propagating equations for mth component in the retarded frame

i
𝜕am(z, 𝜏)

𝜕z
= −

k2
2
𝜕2am
𝜕𝜏2

+ g[am+1e
−i(c1+c2+2c2m)z−i𝜙(z,𝜏) + am−1e

i(c1−c2+2c2m)z+i𝜙(z,𝜏)]

(4)

Here, c1 = k1Ω −Q is linear mismatching between light and
RF signal, and c2 = k2Ω2∕2 is quadratic mismatching caused
by GVD, where k1 and k2 are Taylor expansion coefficients of
wavevector k(𝜔) around 𝜔m, representing the reciprocal of the
group velocity and GVD, respectively. g = Δn𝜔0∕2c denotes the
coupling strength,
Equation (4) describes the dynamics of a pulse with multi-

ple frequency components at 𝜔m propagating along z-axis in
a reference frame moving at vg . The first term on right-band
side of Equation (4) dominates the pulse dispersion behavior,
which is a counterpart of wave diffusion in the spatial dimen-
sion, while the second term refers to frequency conversions.
Equation (4) has the form of the Schrödinger equation within
(2+1) dimensions,[30,43] where the pulse experiences continuous
temporal diffraction and discrete frequency conversion in two
synthetic dimensions while it evolves at z-axis (see Figure 1b).
Moreover, the hopping phase in Equation (4) gives an effective
non-uniform force F = c1 + 2c2m + 𝜕𝜙∕𝜕z pointing along the fre-
quency dimension.[13] Different from previous studies, which
have explored consequences of an effective uniform force in
the synthetic frequency dimension,[6,13,44] here the effective force
varies with z due to GVD. Yet, as we show in the following, a syn-
thetic time-frequency space together with the non-uniform force
give us alternative opportunity for manipulating the pulse prop-
agation in the waveguide.

3. Simulation Results of Single Pulse
Manipulations

We simulate pulse propagations by Equation (4) with excitations
at one end of the waveguide at z = 0. The input pulse has a pro-
file as f (𝜏) = e−1.386[𝜏∕Δ𝜏]2 , where Δ𝜏 = 30 ps is the temporal full

Figure 2. Pulse propagations under b–d) constant modulation and e,f)
modulation with effective gauge potential core labeled by dashed line.
a,c,e) Intensity distribution |am(z, 𝜏)|2 at z = 0 and z = L in the synthetic
time-frequency space. b) Evolution of intensities for each mode Im(z) ≡
∫
𝜏
|am(z, 𝜏)|2d𝜏. d,f) evolution of the pulse I(z, 𝜏) ≡ ∑

m |am(z, 𝜏)|2.

width at half maximum (FWHM).We assume that the input field
contains only one frequency component at 𝜔0 = 1.2 × 1015 Hz
(or 1550 nm). Note that Equation (4) is valid when the condition
Ω > Δ𝜔(z) is satisfied, that is, field profiles at different frequency
components in the spectral domain do not overlap, where Δ𝜔(z)
is the spectral FWHM for each frequency component at any z.
For the input pulse, Δ𝜔 = 2𝜋 ⋅ 14.7 GHz. The simulation is per-
formed with 21 modes (m = −10,… , 10). Figure 2a shows the
profile of the input pulse in the synthetic time-frequency space.
First, we consider the normal case that pulse propagates in

the waveguide under the modulation with 𝜙(z, 𝜏) = 0. We choose
modulation with Δn = 5 × 10−4 and Ω = 2𝜋 ⋅ 29.4 GHz, which
gives g = 103 m−1. For the waveguide with a length L = 2 cm, we
have k2 = 4 × 10−20 m−1s2, which leads to c2 = 682 m−1. c1 can be
approximated to be zero by tuning Q = k1Ω. All parameters are
chosen with the experimental feasibility in the literature.[45–47]

When the pulse evolves along the z-axis, it experiences fre-
quency conversion and nonperiodic oscillation near the 0thmode
in the frequency dimension under the effective non-uniform
force (see Figure 2b). At L = 2 cm, frequency components of
pulse oscillate back to the single mode, which shifts to the 2nd
mode (see Figure 2c). Note that the conventional Bloch oscilla-
tion is periodic under an effective uniform force.[13] Moreover,
the pulse gets broadened due to GVD and has the temporal width
Δ𝜏(z = L) = 79 ps, as shown in Figure 2c,d. It agreeswell with the
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theoretical calculated evolution of the pulse width for a Gaussian
pulse (see Figure S1a, Supporting Information).

3.1. Confined Pulse Propagation

Wenext considermodulations with non-uniform distributions of
phases and explore the dynamics from Equation (4) under effec-
tive non-uniform gauge potential. We choose parameters 𝜙0 = 𝜋,
𝜏c(z) = 0 and Δ𝜏𝜙(z) = 30 ps, which indicate a fixed effective
gauge potential core in the synthetic space. The simulation shows
the confinement of light in the middle region of the effective
gauge potential core (labeled by the dashed line) in the synthetic
time dimension as shown in Figure 2e,f, while the frequency
component is shifted to the 2nd mode as the previous case. The
pulse width remains 30 ps while maintaining an approximate
Gaussian waveform during the propagation (see Figure S1b, Sup-
porting Information). The result here shows an interesting com-
bination between nonperiodic oscillation along the frequency
dimension and the light confinement due to the effective non-
uniform gauge potential in the time dimension. As a compari-
son, we calculate the evolution of pulse with c2 = 0, with other
parameters unchanged, and find temporal confinement of light
persists while the frequency conversion covers a broad range of
modes (see Figure S2, Supporting Information). Moreover, one
can control the distribution of frequency components in the out-
put pulse by using an input pulse with a Gaussian distribution
of multiple modes. Unidirectional and bidirectional frequency
transports together with temporal pulse manipulations can be
achieved (see Figure S3, Supporting Information). Not only the
confined pulse propagation demonstrated here, the idea of utiliz-
ing effective gauge potentials in synthetic time-frequency dimen-
sions provides more different ways to manipulate the pulse.

3.2. Fast and Slow Light

We further shift the center of the effective gauge potential core
linearly dependent on z with 𝜏c(z) = 𝜂1z, where 𝜂1 is the shift
parameter. This choice makes the modulation phase taking the
form of 𝜙(z, 𝜏) = 𝜋 for |𝜏 − 𝜂1z| ≤ 30 ps and zero for other 𝜏. It
provides a way to manipulate the group velocity of pulse con-
trolled by 𝜂1. In simulations, we use Ω = 2𝜋 × 29.4 GHz, Δn =
10−3, and k2 = 6 × 10−20 m−1s2, which give g = 2 × 103 m−1, and
c2 = 1023 m−1. With a positive 𝜂1 = 22 ps cm−1, we find slow
light with group velocity delay of 57 ps and pulse width of 27
ps as shown in Figure 3a,c. On the other hand, one can see the
generation of fast light in Figure 3b,d with negative 𝜂1 = −22 ps
cm−1. Here, large dispersion and strong modulation are chosen
to efficientlymanipulate the group velocity of the pulse. Figure 3e
exhibits the output pulse profiles of slow and fast light at z = L,
where the peak intensity decreases due to the dispersion loss. The
corresponding nonperiodic oscillation for the slow light is plotted
in Figure 3f, while the nonperiodic oscillation for the fast light
is similar. At z = L, the output pulse has two major frequency
components at 0th and 2nd modes (see Figure 3a,b). The single
frequency conversion can be established by choosing a different
propagation length. For example, one sees that oscillations shift
to a single mode at m = 2 at z = 1.63 cm. Further larger group
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Figure 3. a,b) Intensity distribution |am(z, 𝜏)|2 at z = L in the synthetic
time-frequency space. c,d) Evolution of the pulse I(z, 𝜏). The effective
gauge potential cores are labeled by dashed lines. e) The intensity profile
of output pulse I(z = L, 𝜏) in (a) (red line) and (b) (blue line), compared
with input pulse I(z = 0, 𝜏) (black line). f) Evolution of intensities for each
mode Im(z) with effective potential core in (c).

velocity manipulation can be obtained by using larger |𝜂1| and
GVD at the cost of the intensity loss. We note that, in these fast
and slow light manipulations, an input pulse centered at 𝜔0 can
be converted to multiple temporally overlapped pulses centered
at discrete frequencies 𝜔m, where each one at 𝜔m has its pulse
profile nearly unchanged compared with the input one.

3.3. Pulse Compression

The width of effective gauge potential core can also be used to
control the pulse width. We consider a varying gauge poten-
tial core along z with Δ𝜏𝜙(z) = 30 − 𝜂2z and 𝜏c(z) = 0, where
𝜂2 is the width-varying parameter. Thus, the configuration of
modulation phase becomes 𝜙(z, 𝜏) = 𝜋 for |𝜏| ≤ 30 − 𝜂2z ps
and zero for other 𝜏. We take parameters 𝜂2 = 12.5 ps cm−1,
k2 = 6 × 10−21 m−1s2,Δn = 10−3, andΩ = 2𝜋 × 88.2 GHz, which
lead to g = 2 × 103 m−1 and c2 = 920 m−1 in the simulation and
show results in Figure 4. Figure 4a shows the pulse profile in
the synthetic time-frequency space at z = L. Although the pulse
converts to multiple modes, the temporal width of the pulse
is largely compressed. As shown in Figure 4b, the narrowing
of the effective gauge potential core forces pulse compression
gradually while it propagates along the z-axis. Figure 4c plots
the pulse width versus z, showing a trend of overall decrease.
The output pulse profile has width of 5 ps, with the enhanced
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peak intensity. Simultaneously, the frequency conversion follows
nonperiodic oscillation as shown in Figure 4d. The output with
multiple frequency components can be tuned by changing the
length of the waveguide. For example, at z = 1.64 cm, the field
exhibits one major frequency component at the 2nd mode. As
the last note, the pulse compression cannot lead to an output
field with an infinitely small temporal width (broad frequency
bandwidth). The condition Ω > Δ𝜔(z) at any z shall be satisfied.

4. Discussion and Conclusion

We propose a modulated waveguide system with parameters
based on lithium–niobate waveguide system. The numbers used
in simulations require waveguide with large dispersion and fast
electro-optic modulation, which are experimentally achievable in
the second-order nonlinear waveguide with the state-of-art tech-
nology. Dispersion near 10−22 m−1s2 has been reported,[46] which
can be further enlarged by structure engineering or operating
at higher dispersion wavelength. Δn = 10−3 corresponds to 7 V
µm−1 voltage amplitude of an applied external electric field. If
larger modulation is needed, high voltage up to 65 V µm−1 has
been demonstrated.[45] Note that the modulation amplitude Δn
should be large enough to compensate the pulse dispersion (la-
beled by k2) for achieving effective light confinement. Larger
modulation amplitude results in faster frequency conversion ef-
ficiency, which shall not hinder pulse manipulations. The mod-
ulation amplitudes we choose in the simulations are around the
minimum required values. Shorter pulse manipulation is pos-
sible with smaller dispersion but larger modulation frequency,
such as 100 GHz, which is commercially available.[47] The choice
of 𝜔0 in our simulations can be arbitrary as long as the gener-
ated frequency modes are still in the vicinity of the fundamen-
tal guided mode of the waveguide. Moreover, recent advances

of integrated waveguide platform bring opportunity to achieve
synthetic time-frequency dimensions in integrated photonics,
on which modulators with frequency ≈200 GHz have been
demonstrated.[48] The construction of a synthetic time-frequency
space can be further extended beyond by adding other degrees of
freedom such as orbital angular momentum or pseudospin.[7,18]

Besides, our analysis shall be valid for other systems if one scales
parameters consistently. Themodulation phase in the core region
is chosen as 𝜙0 = 𝜋 for generating the largest effective gauge po-
tential contrast to efficiently confine light, while other values of
phases might lead to potential applications in one-way frequency
conversion in the synthetic space.[34] Our model shows promise
for studying pulse propagating in dispersive resonators with syn-
thetic dimensions,[49] and in third-order dispersive waveguide or
microresonator-based systems.[50–53]

In summary, we propose synthetic (2+1) dimensions for ma-
nipulating pulse propagation in a dispersive waveguide under
dynamic modulations. With the effective non-uniform gauge
potential for photons and nonperiodic oscillation in the syn-
thetic space,multiple pulse propagation behaviors including con-
fined pulse propagation, fast/slow light, and pulse compression
have been shown. Our work provides an alternative platform
for actively manipulating single pulse in different ways, which
is highly re-configurable, and hence shows promising poten-
tials for pulse engineering in integrated photonics and optical
communications.[54]

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.

Acknowledgements
The research was supported by the National Natural Science Founda-
tion of China (11974245), the National Key R&D Program of China
(2017YFA0303701), the Shanghai Municipal Science and Technology Ma-
jor Project (2019SHZDZX01), the Natural Science Foundation of Shang-
hai (19ZR1475700), and the China Postdoctoral Science Foundation
(2020M671090). L.Y. acknowledges support from the Program for Pro-
fessor of Special Appointment (Eastern Scholar) at Shanghai Institutions
of Higher Learning. X.C. also acknowledges the support from Shandong
Quancheng Scholarship (00242019024).

Conflict of Interest
The authors declare no conflict of interest.

Data Availability Statement
The data that support the findings of this study are available from the cor-
responding author upon reasonable request.

Keywords
dynamic phase modulation, non-uniform gauge potential, pulse manipu-
lation, synthetic time-frequency dimensions

Received: June 23, 2021
Revised: September 17, 2021

Published online:

Laser Photonics Rev. 2021, 2100340 © 2021 Wiley-VCH GmbH2100340 (5 of 6)

http://www.advancedsciencenews.com
http://www.lpr-journal.org


www.advancedsciencenews.com www.lpr-journal.org

[1] L. Yuan, Q. Lin, M. Xiao, S. Fan, Optica 2018, 5, 1396.
[2] T. Ozawa, H. M. Price, Nat. Rev. Phys. 2019, 1, 349.
[3] L. Yuan, Y. Shi, S. Fan, Opt. Lett. 2016, 41, 741.
[4] T. Ozawa, H. M. Price, N. Goldman, O. Zilberberg, I. Carusotto, Phys.

Rev. A 2016, 93, 043827.
[5] B. A. Bell, K. Wang, A. S. Solntsev, D. N. Neshev, A. A. Sukhorukov,

B. J. Eggleton, Optica 2017, 4, 1433.
[6] C. Qin, F. Zhou, Y. Peng, D. Sounas, X. Zhu, B. Wang, J. Dong, X.

Zhang, A. Alù, P. Lu, Phys. Rev. Lett. 2018, 120, 133901.
[7] X. Luo, X. Zhou, C. Li, J. Xu, G. Guo, Z. Zhou, Nat. Commun. 2015,

6, 7704.
[8] A. Regensburger, C. Bersch, B. Hinrichs, G. Onishchukov, A.

Schreiber, C. Silberhorn, U. Peschel, Phys. Rev. Lett. 2011, 107,
233902.

[9] A. Regensburger, C. Bersch, M.-A. Miri, G. Onishchukov, D. N.
Christodoulides, U. Peschel, Nature 2012, 488, 167.

[10] E. Lustig, S.Weimann, Y. Plotnik, Y. Lumer,M. A. Bandres, A. Szameit,
M. Segev, Nature 2019, 567, 356.

[11] L. J. Maczewsky, K. Wang, A. A. Dovgiy, A. E. Miroshnichenko, A. Mo-
roz, M. Ehrhardt, M. Heinrich, D. N. Christodoulides, A. Szameit, A.
A. Sukhorukov, Nat. Photonics 2020, 14, 76.

[12] K. Wang, B. A. Bell, A. S. Solntsev, D. N. Neshev, B. J. Eggleton, A. A.
Sukhorukov, Light Sci. Appl. 2020, 9, 132.

[13] L. Yuan, S. Fan, Optica 2016, 3, 1014.
[14] X. W. Luo, C. Zhang, G. C. Guo, Z. W. Zhou, Phys. Rev. A 2018, 97,

043841.
[15] L. Yuan, Q. Lin, M. Xiao, A. Dutt, S. Fan, APL Photonics 2018, 3,

086103.
[16] Z. Yang, E. Lustig, G. Harari, Y. Plotnik, Y. Lumer, M. A. Bandres, M.

Segev, Phys. Rev. X 2020, 10, 011059.
[17] L. Yuan, Q. Lin, A. Zhang, M. Xiao, X. Chen, S. Fan, Phys. Rev. Lett.

2019, 122, 083903.
[18] A. Dutt, Q. Lin, L. Yuan, M. Minkov, M. Xiao, S. Fan, Science 2020,

367, 59.
[19] W.H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. S. J. Russell,

F. G. Omenetto, A. Efimov, A. J. Taylor, Nature 2003, 424, 511.
[20] S. W. Huang, H. Zhou, J. Yang, J. F. McMillan, A. Matsko, M. Yu, D.

L. Kwong, L. Maleki, C. W. Wong, Phys. Rev. Lett. 2015, 114, 053901.
[21] S. Divitt, W. Zhu, C. Zhang, H. J. Lezec, A. Agrawal, Science 2019, 364,

890.
[22] N. G. R. Broderick, D. Taverner, D. J. Richardson, M. Ibsen, R. I. Lam-

ing, Phys. Rev. Lett. 1997, 79, 4566.
[23] P. Colman, C. Husko, S. Combrié, I. Sagnes, C. W. Wong, A. De Rossi,

Nat. Photonics 2010, 4, 862.
[24] D. T. H. Tan, P. C. Sun, Y. Fainman, Nat. Commun. 2010, 1, 116.
[25] M. Stratmann, T. Pagel, F. Mitschke, Phys. Rev. Lett. 2005, 95,

143902.
[26] S. H. Lee, D. Y. Oh, Q. F. Yang, B. Shen, H. Wang, K. Y. Yang, Y. H. Lai,

X. Yi, X. Li, K. Vahala, Nat. Commun. 2017, 8, 1295.
[27] G. M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinski, R. W. Boyd,

Science 2006, 312, 895.

[28] G. Li, Y. Chen, H. Jiang, Y. Liu, X. Liu, X. Chen, Opt. Express 2015, 23,
18345.

[29] T. Qin, J. Yang, F. Zhang, Y. Chen, D. Shen, W. Liu, L. Chen, X. Jiang,
X. Chen, W. Wan, Commun. Phys. 2020, 3, 118.

[30] G. P. Agrawal, Nonlinear Fiber Optics, Elsevier Science, Amsterdam
2010.

[31] U. Peschel, C. Bersch, G. Onishchukov, Centr. Eur. J. Phys. 2008, 6,
619.

[32] B. W. Plansinis, W. R. Donaldson, G. P. Agrawal, Phys. Rev. Lett. 2015,
115, 183901.

[33] B. W. Plansinis, W. R. Donaldson, G. P. Agrawal, J. Opt. Soc. Am. B
2016, 33, 1112.

[34] Q. Lin, S. Fan, Phys. Rev. X 2014, 4, 031031.
[35] Y. Lumer, M. A. Bandres, M. Heinrich, L. J. Maczewsky, H. Herzig-

Sheinfux, A. Szameit, M. Segev, Nat. Photonics 2019, 13, 339.
[36] M. I. Cohen, C. Jörg, Y. Lumer, Y. Plotnik, E. H. Waller, J. Schulz, G. v.

Freymann, M. Segev, Light Sci. Appl. 2020, 9, 200.
[37] F. Y. Gan, G. L. Yip, in Applications of Photonic Technology 2, Springer,

New York 1997, pp. 469–475.
[38] C. Qin, L. Yuan, B. Wang, S. Fan, P. Lu, Phys. Rev. A 2018, 97, 063838.
[39] I. Krasnokutska, J.-L. J. Tambasco, X. Li, A. Peruzzo,Opt. Express 2018,

26, 897.
[40] D. Zhu, L. Shao, M. Yu, R. Cheng, B. Desiatov, C. J. Xin, Y. Hu, J. Holz-

grafe, S. Ghosh, A. Shams-Ansari, E. Puma, N. Sinclair, C. Reimer, M.
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